

Eiger Detector

Eiger Detector is a software solution for the control of and acquisition of data
from a Dectris Eiger detector. This module is built on top of the detector
framework odin-detector [https://github.com/odin-detector] which has been created for ease of integration, scalability,
and highly efficient data acquisition. The module does not require a particular
control middleware to act as a client, providing instead a RESTful API over HTTP.

A web based GUI is supplied with the module as a default client to allow immediate testing
once the software has been built.

There is also a separate software repository ADOdin [https://github.com/dls-controls/ADOdin] that contains an EPICS client application
which can be used to control this software stack.

Documentation

The following documentation is available for Eiger Detector:

	The introduction section provides an overview of the various software components and a guide to the odin-detector framework.

	The quickstart guide will show you how to run up the software with very little detail on each step. This guide focuses on getting running quickly and uses a simulator to show the software working without the need for any hardware.

	The installation instructions explain in detail the steps necessary to install the software module on a native linux OS.

	The user guide demonstrates how to operate the detector with the software.

	The reference documentation provides full details of the interactions between components and can be used to create a client for control of the Eiger Detector module.

Other

Contents:

	Introduction
	Eiger Detector

	Odin Detector

	Deployment

	Quickstart Guide
	Prerequisites

	Step By Step

	Additional Details

	Installation
	Installing From Source

	Installation Using Docker

	User Manual
	Introduction

	Data File Structure

	Web based GUI

	Odin Control Server

	Fan Out

	Frame Receiver

	Frame Processor

	Meta Data Writer

	Reference
	Client API

	Frame Processor Plugin API

	Frame Receiver Decoder API

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Eiger Detector

Eiger X-ray hybrid photon counting detectors can produce frames rates in the kilohertz range
with continuous readout. The detector can be controlled by using the Dectris Simplon API
which implements a RESTful API over HTTP. Images produced by the detector can be captured
directly from a ZeroMQ stream; these images are compressed using one of the compression
options avaialble on the detector. A separate monitor (live view) image can be retrieved
from the detector using a Simplon HTTP request. The monitor image is transferred as a TIFF
file (not compressed) and is available at a much reduced rate.

This Eiger Detector software stack provides applications for the following:

	Controlling the detector parameters and acquisition.

	Monitoring the detector status.

	Reading and displaying the live view image.

	Receiving images from the ZeroMQ data stream.

	Manipulating and writing image data to disk (using HDF5).

	Writing associated meta data to disk (using HDF5).

	Controlling the destination of individual images to allow multiple writing applications be present in the deployment.

The ability to alter the destination of individual frames provides scalability of the software
stack. As frame rates get higher more writing nodes can be introduced to the system and these
nodes can reside on different physical hardware. More details of the scalabililty are provided
in the deployment section below.

All of the applications mentioned above are handled through a single point of control (the
odin control server) and this provides a simple RESTful API to interact with the whole stack.
The odin control server also serves a set of static HTML pages by default which provide a
web based GUI that can be used without the need to integrate the software stack into another
framework; all that is required is a standard browser.

Odin Detector

Devices consisting of multiple individual parts can lead
to complications in the control layer trying to get operate
them together in unity. The Odin software framework is
designed specifically for this modular architecture by mir-
roring the structure within its internal processes. The data
acquisition modules have the perspective of being one of
many nodes built into the core of their logic. This makes it
straightforward to operate multiple file writers on different
server nodes working together to write a single acquisition
to disk, all managed by a single point of control. It also
means that the difference in the data acquisition stack of a
1M system and a 3M system can be as little as duplicating a
few processes and modifying the configuration of the central
controller. Given the collaborative nature of the detector
development, the software framework has been designed to be
generic, allowing its integration with control systems used
at different sites.

The figure below shows the OdinControl Server architecture for
a four node Eiger Odin system.

[image: images/EigerOdinControl.png]

Figure 1. OdinControl Server architecture for a four-node Eiger Odin system.

Figure 1 demonstrates the generic RESTful interface that Odin
provides. The control server can be accessed by four different
methods:

	ADOdin - This is an EPICS areaDetector implementation that can interface to Odin detector systems.

	Web Browswer - Simply pointing a standard web browser at the Odin control server will open a web based GUI for control and monitoring.

	Python Script - Using the requests module (or equivalent) HTTP requests can be scripted to control and monitor the system.

	Command Line - The standard Linux tool curl can be used to send HTTP requests for control and monitoring.

Odin comprises two parts; OdinControl, the central control application,
and OdinData, a data acquisition stack, both of which
can be used independently of each other as well as in conjunction.
These modules are described, separately, below.

Odin Control

OdinControl is a HTTP based server host providing a
framework that device-specific adapters can be implemented
for to interface to the control channel of a device. The archi-
tecture of OdinControl for the Excalibur use case is shown
in Fig. 2. Adapters can be loaded in an Odin Server instance,
which then provides a REST API that can be operated us-
ing just a web page providing the appropriate GETs and
PUTs, corresponding to the attributes and methods in the
adapter API. See Fig. 3 for an example web page for Perci-
val. This can be extended to a RESTful client library that
can be integrated into a higher level control system such as
EPICS. Once an Odin Server instance is running with a set
of adapters loaded, a parameter tree is created in the API
defining the different devices, duplicates of the same devices
and finally the endpoints for those devices, producing logi-
cal paths to the parameters and methods of a collection of
separate systems. With OdinControl and a device adapter, a
control system agnostic, consistent API is created that can be
used in a wide range of applications. OdinControl provides
a simple Python API, enabling rapid development of device
adapters. Because of the generic architecture of OdinCon-
trol it does not need a tight coupling to OdinData; it is also
interfaced via adapters, just like Excalibur or Percival, to
provide a REST API for a set of methods. This keeps the two
parts of Odin entirely separate, achieving a good software
design with loose coupling and high cohesion.

Odin Data

OdinData gathers incoming frames from a data stream
and writes them to disk as quickly as possible. It has a
modular architecture making it simple to add functionality
and extend its use for new detectors. The function of the
software itself is relatively simple, allowing a higher-level su-
pervisory control process to do the complex logic defined by
each experimental situation and exchanging simple configu-
ration messages to perform specific operations. This makes
it easy for the control system to operate separate systems
cooperatively.
OdinData consists of two separate processes. These are
the FrameReceiver (FR) and the FrameProcessor (FP). The
FR is able to collect data packets on various input channel
types, for example UDP and ZeroMQ [6], construct data
frames and add some useful meta data to the packet header
before passing it on to the FP through a shared memory
interface. The FP can then grab the frame, construct data
chunks in the correct format and write them to disk. The
two separate processes communicate via inter-process com-
munication (IPC) messages over two ZMQ channels. When
the FR places a frame into shared memory, it sends a mes-
sage over the ready channel, the FP consumes the frame and
once it is finished passes a message over the release channel
allowing the FR to re-use the frame memory. The use and
re-use of shared memory reduces the copying of large data
blobs and increases data throughput. This logic is shown
visually in Fig. 4.
The overall concept is to allow a scalable, parallel data
acquisition stack writing data to a individual files in a shared
network location. This allows fine tuning of the process
nodes for a given detector system, based on the image size
and frame rate, to make sure the beamline has the capacity to
carry out its experiments and minimise the data acquisition
bottleneck.

Plugins
OdinData is extensible by the implementation of plugins.
The Excalibur detector has a module with two plugins built
against the OdinData library. One for the FR and one for
the FP. These provide the implementation of a decoder of
the raw frame data as well as the processing required to
define the data structure written to disk. As an example,
the Excalibur plugins implement some algorithms [4] to
perform transforms to rotate chunks of the input data, due
to the physical orientation of the chips on the detector. The
implementation of any other detector would simply require
the two plugins to be replaced with equivalents, to process
the output data stream; the surrounding logic would remain
exactly the same.

API
OdinData provides a python library with simple methods
for initialising, configuring and retrieving status from the
FP and FR processes at runtime. These can be integrated
with a wider control system, but can also be used directly in
a simple python script or interactively from a python shell.
This is how OdinData integrates with OdinControl; there is
no special access granted, the interface is generic allowing
it to be integrated with other control systems.
HDF5 Features
To take advantage of the high data rates of modern de-
tectors, OdinData seeks to write data to disk quickly with
minimal processing overhead. To achieve this, the built-in
FileWriterPlugin employs some of the latest features of the
HDF5 library.
The Virtual Dataset (VDS) [7] enables the file writing to
be delegated to a number of independent, parallel processes,
because the data can all be presented as a single file at the
end of an acquisition using VDS to link to the raw datasets.
Secondly, with Single Writer Multiple Reader (SWMR) [7]
functionality, datasets are readable throughout the acquisi-
tion and live processing can be carried out while frames are
still being captured, greatly reducing the overall time to pro-
duce useful data. Though the real benefit comes when these
two features are combined. A VDS can be created anytime
before, during or after and acquisition, independent of when
the raw datasets and created. Then, as soon as the parallel
writers begin writing to each raw file, the data appears in
the VDS as if the processes were all writing to the same file
and can be accessed by data analysis processes in exactly
the same way.
A more straightforward improvement in the form of a data
throughput increase is found by the use of Direct Chunk
Write [7]. With a little extra effort in the formatting of the
data chunk, this allows the writer to skip the processing
pipeline that comes with the standard write method and
write a chunk straight to disk as provided. This reduces the
processing required and limits data copying. For the Eiger
use case specifically, great use is made of the Direct Chunk
Write to allow writing of pre-compressed images from the
detector to file. Due to the considerable data rate of the
detector, compression is used to reduce network and file
writing load by around a factor of four, depending on the
sensor exposure. Reader applications can use Dynamically
Loaded Filters [7] to read the datasets.

Deployment

Quickstart Guide

This Quickstart guide will show you how to run a software stack containing
a full set of control applications for an Eiger detector. The default
settings will run a simulator in place of real hardware to allow immediate
demonstration and testing. Replacing the simulator with a real detector
requires minimal configuration changes and will be explained in the step
by step instructions.

Prerequisites

The quickstart runs the Eiger applications in a containerized setup.
Docker [https://docs.docker.com/install/] is required to run the
software stack using this guide. To install from source without
containers read the installation instructions.

Step By Step

	Make sure you have read the Prerequisites

	Clone the eiger-detector github repository:

git clone https://github.com/dls-controls/eiger-detector.git

	Change into the docker directory present in the module:

cd eiger-detector/docker

	Build the docker image from the Dockerfile present in that directory:

sudo docker build --tag eiger .

	Run the tests …… TBC

	Run the eiger simulator and detector applications

	Open a browser on your host machine and point it to localhost port 8888

You should see the eiger-detector home page. Click on the Home tab and the page
should look similar to the image below.

Additional Details

The Dockerfile contains a long list of build instructions that were executed
when the container image was built (step 4 above). These lines equate to the
installation steps that would be necessary to build the software stack from
source, and each step is explained in detail in the installation
instructions.

This default build of the software stack executes all applications on the same
machine, running four instances each of the FrameProcessor and FrameReceiver
applications. It also runs a control and data acquisition simulator ……..

ADD INSTRUCTIONS ON REPLACING THE SIMULATOR WITH HARDWARE

Installation

Installing From Source

Installation from source requires several tools and external packages to be available as
well as the building and installation of three Odin and Eiger specific software packages.
This guide assumes the the installation is taking place on a CentOS 7 (or RHEL 7) operating
system. The source can also be built for other operating systems;
any operating system specific package installation commands should simply be replaced with
the equivalent command for the chosen operating system.

Prerequisites

The Odin and Eiger software requires standard C, C++ and python development tools to be
present. The following libraries and tools are also required:

	boost (add link)

	cmake (add link)

	log4cxx (add link)

	ZeroMQ (add link)

	pcap (add link)

	Cython (add link)

	Python Pip (add link)

	Python Virtual Environment (add link)

All of the above packages can be installed from the default package manager Yum (add link)
with the following commands:

yum install -y epel-release
yum groupinstall -y 'Development Tools'
yum install -y boost boost-devel
yum install -y cmake
yum install -y log4cxx-devel
yum install -y zeromq3-devel
yum install -y libpcap-devel
yum install -y python2-pip
yum install -y python-virtualenv
yum install -y Cython

For all remaining sections of this installation guide it is assumed that source files are
going to be located in the directory:

/home/eiger/src

and the installed files will be located in the directory:

/home/eiger/prefix

File Writing Libraries

As well as the tools and libraries mentioned above there are two libraries required for the writing of
data to disk and for compression of that data should it be required. The files are saved
using the HDF5 file format and it is higly recommended to install from source a release of
the HDF5 library which is at version 1.10.4 or greater:

cd /home/eiger/src
curl -L -O https://www.hdfgroup.org/ftp/HDF5/releases/hdf5-1.10/hdf5-1.10.4/src/hdf5-1.10.4.tar.bz2
tar -jxf hdf5-1.10.4.tar.bz2
mkdir -p /home/eiger/src/build-hdf5-1.10
cd /home/eiger/src/build-hdf5-1.10
/home/eiger/src/hdf5-1.10.4/configure --prefix=/home/eiger/prefix
make >> /home/eiger/src/hdf5build.log 2>&1
make install

Odin-Data supports writing compressed data files using the Blosc high performance compressor optimised for
binary data. The Blosc compressor is supplied as an optional odin-data plugin and requires the Blosc
compression library to be installed. The following instructions will install the Blosc library:

cd /home/eiger/src
curl -L -s -o c-blosc-1.14.2.tar.gz -O https://github.com/Blosc/c-blosc/archive/v1.14.2.tar.gz
tar -zxf c-blosc-1.14.2.tar.gz
mkdir -p /home/eiger/src/build-blosc
cd /home/eiger/src/build-blosc
cmake /home/eiger/src/c-blosc-1.14.2/ -DCMAKE_INSTALL_PREFIX=/home/eiger/prefix
make >> /home/eiger/src/bloscbuild.log 2>&1
make install

Installing Odin-Control

Section TBD

Installing Odin-Data

Section TBD

Installing Eiger-Detector

Section TBD

Installation Using Docker

Section TBD

User Manual

Introduction

Data File Structure

Web based GUI

Odin Control Server

Fan Out

Frame Receiver

Frame Processor

Meta Data Writer

Reference

Client API

Frame Processor Plugin API

Frame Receiver Decoder API

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Eiger Detector

 		
 Introduction

 		
 Eiger Detector

 		
 Odin Detector

 		
 Odin Control

 		
 Odin Data

 		
 Deployment

 		
 Quickstart Guide

 		
 Prerequisites

 		
 Step By Step

 		
 Additional Details

 		
 Installation

 		
 Installing From Source

 		
 Prerequisites

 		
 File Writing Libraries

 		
 Installing Odin-Control

 		
 Installing Odin-Data

 		
 Installing Eiger-Detector

 		
 Installation Using Docker

 		
 User Manual

 		
 Introduction

 		
 Data File Structure

 		
 Web based GUI

 		
 Odin Control Server

 		
 Fan Out

 		
 Frame Receiver

 		
 Frame Processor

 		
 Meta Data Writer

 		
 Reference

 		
 Client API

 		
 Frame Processor Plugin API

 		
 Frame Receiver Decoder API

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

